Lessons

Biological Diversity

Exam Prep Study Notes (Things to remember) 

Biological Diversity


21.1 Viral Evolution, Morphology, and Classification

Viruses are tiny, acellular entities that can usually only be seen with an electron microscope. Their genomes contain either DNA or RNA—never both—and they replicate using the replication proteins of a host cell. Viruses are diverse, infecting archaea, bacteria, fungi, plants, and animals. Viruses consist of a nucleic acid core surrounded by a protein capsid with or without an outer lipid envelope. The capsid shape, presence of an envelope, and core composition dictate some elements of the classification of viruses. The most commonly used classification method, the Baltimore classification, categorizes viruses based on how they produce their mRNA.


21.2 Virus Infection and Hosts

Viral replication within a living cell always produces changes ..............................................

..............................................

..............................................

.............................................. (mainly sucrose) move from sources to sinks through the plant’s phloem. Sucrose is actively loaded into the sieve-tube elements of the phloem. The increased solute concentration causes water to move by osmosis from the xylem into the phloem. The positive pressure that is produced pushes water and solutes down the pressure gradient. The sucrose is unloaded into the sink, and the water returns to the xylem vessels.


23.6 Plant Sensory Systems and Responses

Plants respond to light by changes in morphology and activity. Irradiation by red light converts the photoreceptor phytochrome to its far-red light-absorbing form—Pfr. This form controls germination and flowering in response to length of day, as well as triggers photosynthesis in dormant plants or those that just emerged from the soil. Blue-light receptors, cryptochromes, and phototropins are responsible for phototropism. Amyloplasts, which contain heavy starch granules, sense gravity. Shoots exhibit negative gravitropism, whereas roots exhibit positive gravitropism. Plant hormones—naturally occurring compounds synthesized in small amounts—can act both in the cells that produce them and in distant tissues and organs. Auxins are responsible for apical dominance, root growth, directional growth toward light, and many other growth responses. Cytokinins stimulate cell division and counter apical dominance in shoots. Gibberellins inhibit dormancy of seeds and promote stem growth. Abscisic acid induces dormancy in seeds and buds, and protects plants from excessive water loss by promoting stomatal closure. Ethylene gas speeds up fruit ripening and dropping of leaves. Plants respond to touch by rapid movements (thigmotropy and thigmonasty) and slow differential growth (thigmomorphogenesis). Plants have evolved defense mechanisms against predators and pathogens. Physical barriers like bark and spines protect tender tissues. Plants also have chemical defenses, including toxic secondary metabolites and hormones, which elicit additional defense mechanisms.

NOTE: You need to be subscribed to either a monthly or annual plan to view the full list of ScienceBee Exam Prep Study Notes.
Please visit  to register for a plan. 

Evolutionary Processes

Exam Prep Study Notes (Things to remember) 

Evolutionary Processes


18.1 Understanding Evolution

Evolution is the process of adaptation through mutation which allows more desirable characteristics to be passed to the next generation. Over time, organisms evolve more characteristics that are beneficial to their survival. For living organisms to adapt and change to environmental pressures, genetic variation must be present. With genetic variation, individuals have differences in form and function that allow some to survive certain conditions better than others. These organisms pass their favorable traits to their offspring. Eventually, environments change, and what was once a desirable, advantageous trait may become an undesirable trait and organisms may further evolve. Evolution may be convergent with similar traits evolving in multiple species or divergent with diverse traits evolving in multiple species that came from a common ancestor. Evidence of evolution can be observed by means of DNA code and the fossil record, and also by the existence of homologous and vestigial structures.


18.2 Formation of New Species

Speciation occurs along two main pathways: geographic separation (allopatric speciation) and through mechanisms that occur within a shared habitat (sympatric speciation). Both pathways isolate a population reproductively in some form. Mechanisms of reproductive isolation act as barriers between closely related species, enabling them to diverge and ...........................

.................................

.................................


20.2 Determining Evolutionary Relationships

To build phylogenetic trees, scientists must collect accurate information that allows them to make evolutionary connections between organisms. Using morphologic and molecular data, scientists work to identify homologous characteristics and genes. Similarities between organisms can stem either from shared evolutionary history (homologies) or from separate evolutionary paths (analogies). Newer technologies can be used to help distinguish homologies from analogies. After homologous information is identified, scientists use cladistics to organize these events as a means to determine an evolutionary timeline. Scientists apply the concept of maximum parsimony, which states that the order of events probably occurred in the most obvious and simple way with the least amount of steps. For evolutionary events, this would be the path with the least number of major divergences that correlate with the evidence.


20.3 Perspectives on the Phylogenetic Tree

The phylogenetic tree, first used by Darwin, is the classic “tree of life” model describing phylogenetic relationships among species, and the most common model used today. New ideas about HGT and genome fusion have caused some to suggest revising the model to resemble webs or rings.

NOTE: You need to be subscribed to either a monthly or annual plan to view the full list of ScienceBee Exam Prep Study Notes.
Please visit  to register for a plan. 

Genetics

Exam Prep Study Notes (Things to remember) 

The Cell


4.1 Studying Cells

A cell is the smallest unit of life. Most cells are so tiny that they cannot be seen with the naked eye. Therefore, scientists use microscopes to study cells. Electron microscopes provide higher magnification, higher resolution, and more detail than light microscopes. The unified cell theory states that all organisms are composed of one or more cells, the cell is the basic unit of life, and new cells arise from existing cells.


4.2 Prokaryotic Cells

Prokaryotes are single-celled organisms of the domains Bacteria and Archaea. All prokaryotes have plasma membranes, cytoplasm, ribosomes, and DNA that is not membrane-bound. Most have peptidoglycan cell walls and many have polysaccharide capsules. Prokaryotic cells range in diameter from 0.1 to 5.0 μm.

As a cell increases in size, its surface area-to-volume ratio decreases. If the cell grows too large, the plasma membrane will not have sufficient surface area to support the rate of diffusion required for the increased volume.


4.3 Eukaryotic Cells

Like a prokaryotic cell, a eukaryotic cell has a plasma membrane, cytoplasm, and ribosomes, but a eukaryotic cell is typically larger than a prokaryotic cell, has a true nucleus (meaning its DNA is surrounded by a membrane), and has other membrane-bound organelles that allow for compartmentalization of functions. The plasma membrane is a phospholipid bilayer embedded with proteins. The nucleus’s nucleolus is the site of ribosome assembly. Ribosomes are either found in the cytoplasm or --------------------------

----------------------

-----------------------photosynthesis. Photosystem I absorbs a second photon, which results in the formation of an NADPH molecule, another energy and reducing power carrier for the light-independent reactions.



8.3 Using Light to Make Organic Molecules

Using the energy carriers formed in the first steps of photosynthesis, the light-independent reactions, or the Calvin cycle, take in CO2 from the environment. An enzyme, RuBisCO, catalyzes a reaction with CO2 and another molecule, RuBP. After three cycles, a three-carbon molecule of G3P leaves the cycle to become part of a carbohydrate molecule. The remaining G3P molecules stay in the cycle to be regenerated into RuBP, which is then ready to react with more CO2. Photosynthesis forms an energy cycle with the process of cellular respiration. Plants need both photosynthesis and respiration for their ability to function in both the light and dark, and to be able to interconvert essential metabolites. Therefore, plants contain both chloroplasts and mitochondria.

 

NOTE: You need to be subscribed to either a monthly or annual plan to view the full list of ScienceBee Exam Prep Study Notes.
Please visit  to register for a plan. 

6.2 Potential, Kinetic, Free, and Activation Energy

6.2 Potential, Kinetic, Free, and Activation Energy


In this section, you will explore the following questions:

6.1 Energy and Metabolism

6.1 Energy and Metabolism


In this section, you will explore the following questions:

  • What are metabolic pathways?
  • What are the differences between anabolic and catabolic pathways?
  • How do chemical reactions play a role in energy transfer?

5.8 Critical Thinking Questions

5.8 Critical Thinking Questions

18. 

Why do phospholipids tend to spontaneously orient themselves into something resembling a membrane?

5.6 Chapter Summary

5.6 Chapter Summary


5.1 Components and Structure

4.6.5 Chapter Summary

4.6.5 Chapter Summary


4.1 Studying Cells

Pages

Subscribe to RSS - Lessons